УДК 535.2, 535.8

Візуалізація та вимірювання нанорозмірних об'єктів за допомогою зв'язаних оптичних резонаторів

Поздняков Д.С, к.т.н., доц. Чадюк В.О.

Вступ.

3 нанотехнологій розвитком зросла потреба у засобах візуалізації, вимірювання переміщення та нанорозмір-них об'єктів. В оптиці одними з найбільш чутливих та точних є інтерферометричні методи. Оптичний резонатор (інтерферо-метр Фабрі-Перо) є інструментом, дуже чутливим до зміни його добротності оптичної довжини. Зміна та амплітуду добротності впливає на коливань на його виході, а зміна довжини зміщує спектральне «вікно прозорості» резонатора і відповідно змінює потужність та частоту вихідного випромінювання. Для дослідження можливостей використання оптичного резонатора інструмента нанотехнологій ЯК потрібна модель взаємодії нанооб'єкта внутрірезонаторними 3 випромінюванням.

Побудова моделі та її аналіз.

Розгляньмо можливість використання зв'язаних оптичних резонаторів (активного, лазерного та пасивного. вимірювального) для вимірювання візуалізації та нанорозмірних об'єктів, зокрема частинок. На Рис. 1 зображена схема поєднання таких резонаторів.

Нехай активний резонатор лазера з довжиною хвилі випромінювання λ має оптичну довжину L₁ і утворений плоскими дзеркалами 4 та 6 3 коефіцієнтами відбиття за амплітудою r₁ та r₂, а також підсилювальним середовищем ненасиченим 3 коефіцієнтом Для підсилення g_{0} . спрощення розрахунків вважатимемо, активне середовище повністю ШО заповнює лазерний резонатор.

Рис. 1. Зв'язані резонатори – активний (лазерний) та пасивний:

1, 2 – дзеркала лазера; 3, 4 – дзеркала пасивного резонатора; 5 – активне середовище; 6 – досліджувана частинка

Пасивний напівконфокальний довжиною L_2 формують резонатор сферичне дзеркало 4 з радіусом (фокусною кривизни $R_{4} = 2L_{2}$ відстанню $f = R_4/2$) та коефіцієнтом відбиття r₄, а також плоске дзеркало (предметне скло) 3 з коефіцієнтом відбиття r₃, на якому знаходиться наночастинка радіусом $a \ll \lambda$ 3 матеріалу з показником заломлення n_{p} . Предметне скло має можливість за допомогою п'єзоприводу переміщуватись імерсії на перпендикулярно оптичній осі лазера, не змінюючи довжину резонатора $L_2 =$ f. Частинка як точковий розсіювач, сферичного потрапляючи у фокус резонатора, дзеркала 4 пасивного збільшує відбиття коефіцієнт ефективний предметного скла i коефіцієнт відбиття предметного скла стає рівним

$$r_{3eff} = r_3 + \frac{4a^2}{d_f^2} (r_p - r_3)$$
 (1)

де d_f – діаметр фокальної плями на дзеркалі 3, утвореної внаслідок

фокусування лазерного випромінювання сферичним дзеркалом 4.

Поява частинки у фокусі дзеркала 4 збільшує добротність пасивного резонатора, оскільки збільшується розсіяння світла у бік сферичного дзеркала. Частинка згідно з формулою Релея має ефективний коефіцієнт відбиття [1]

$$r_{p} = \frac{16\pi^{4}a^{6}}{\lambda^{4}f^{2}} \left(\frac{n_{p}^{2}-1}{n_{p}^{2}+2}\right)^{2}$$
(2)

Розсіяне на частинці лазерне випромінювання збирається дзеркалом паралельний 3 пучок V i спрямовується в активний резонатор для підсилення. Пасивний резонатор має довжину f, яка трохи зменшується у разі появи на предметному склі 4 частинки, змінюючи тим самим резонансні частоти резонатора.

Умовою лазерної генерації є:

$$r_1 r_{2eff} \exp(2g_0 L_1) \ge 1$$
, (3)

де r_{2eff} – ефективний коефіцієнт відбиття дзеркала 2 лазерного резонатора, причому

$$r_{2eff} = r_{2} + \left(1 - r_{2}^{2}\right) \left(1 - r_{3eff}^{2}\right) r_{4} \exp\left[i2k\left(L_{2} + nL_{3}\right)\right].$$
(4)

Налаштуванням довжини пасивного резонатора можна досягти, щоб $k(L_2 + nL_3) = q\pi$, де q – велике ціле число; тоді

$$r_{2eff} = -r_2 - \left(1 - r_2^2\right) \left(1 - r_{3eff}^2\right) r_4.$$
 (5)

Потужність вихідного лазерного випромінювання можна знайти за формулою [2]

$$P = \frac{\left(1 - r_1^2\right)\sigma}{\eta\left(1 + r_1^2\right)} \left[\frac{g_0 L_1}{\alpha L_1 + \ln\left(r_1 r_{2eff}\right)^{-1}} - 1\right]$$
(6)

де σ – ефективний переріз активного середовища, η – параметр насичення активного середовища, α – втрати за один прохід резонатора на розсіяння в активному середовищі, на вікнах Брюстера (в газовому лазері), а також дифракційні втрати.

Відносну зміну потужності випромінювання, викликану появою частинки у фокусі дзеркала 4, можна подати як

$$\delta P_{rel}(a) = \frac{P_a}{P_0} - 1, \qquad (7)$$

де P_a та P_0 – потужності випромінювання за наявності та відсутності частинки у фокусі дзеркала 4.

Позначимо через $r_{2(a)}$ та $r_{2(0)}$ ефективні коефіцієнти відбиття дзеркала 2 за наявності та відсутності частинки у фокусі дзеркала 4. Тоді відносна зміна потужності

$$\delta P_{rel}(a) = K \frac{g_0 L_1}{\alpha L_1 + \ln(r_1 r_{2(a)})^{-1}} - 2, \qquad (8)$$

де *К* – коефіцієнт, який не залежить від розміру частинки;

$$K = \frac{\alpha L_1 + \ln(r_1 r_{2(0)})^{-1}}{(g_0 - \alpha) L_1 - \ln(r_1 r_{2(0)})^{-1}}, \qquad (9)$$

Рівняння (1), (2), (5), (8) та (9) математичну описують модель вимірюваль-ної системи на основі зв'язаних резонаторів, яка дозволяє вибрати оптимальні значення коефіцієнтів відбиття дзеркал та підібрати активне середовище 3 необхідним коефіцієнтом підсилення досягнення для максимальної чутливості вимірювань.

Для побудови залежності відносної зміни потужності вихідного лазерного випромінювання від розміру наночастинки використано такі значення параметрів моделі:

 $L_1 = 1$ m; $L_2 = 0,1$ m; $L_3 = 0,01$ m; r_1 = -0,95; $r_2 = -0,95$ ta -0,9; $r_3 = -0,2$; r_4 = -0,999; n = 1,5; $n_p = 2,3$; $g_0 = 0,1$ m⁻¹; $\lambda = 633$ HM; $\alpha = 0,02$ m⁻¹; $d_f = 1$ MKM.

Залежність зображена на Рис. 2 для значень $r_2 = -0.95$ та 0.9. На Рис. 3 показано фрагмент цієї залежності для $r_2 = -0.95$ та діапазону a = 0-100 нм.

Рис. 2. Залежності відносної потужності випромінювання лазера зі зв'язаними резонаторами від радіусу внутрішньо резонаторної частинки для r₂=-0,95 (верхня крива) та r₂=-0,9 (нижня крива)

Рис. 3. Фрагмент верхньої кривої

Рис. 2 для діапазону α=0-100 нм

Висновки

Розглянуто математичну модель зв'язаних оптичних резонаторів активного та пасивного, які запропоновано використати для візуалізації та вимірювання нанорозмірних об'єктів. Отримано залежність відносної зміни потужності вихідного лазерного випромінювання від розміру наночастинки.

Література

- 1. Bohren C.F. Absorption and scattering of light by small particles / C.F. Bohren, D. R. Huffman. – Weinheim: Wiley-VCH, 2004. – 530 p.
- Ищенко Е.Ф. Оптические квантовые генераторы / Е.Ф. Ищенко, Ю.М. Климков. – М.: Сов. радио, 1968. – 472 с.